Y
2

UNCLASSIFIED

v 297982

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED




PRI T o i 2k it

NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
govermment procurement operation, the U. S. =
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




25762

<T
e e
| —
P
= t
g i
m .
o O
é';! 2 -u e i
E’ Q ‘i" - . Y
=< RESEARCH INSTITUTE
S <t 7 &
SCLIENCE & ENGINEERING
INTERIM REPCORT Ig
GRAVITATIONAL RADIATION IN FLAT SPACETIME RELATIVITY
Under Technical Supervision of
U.S.A. TRECOM Contract No. DA-44-177-TC-519
Prepared by: James C. Keith February 8, 1961,
$ 4 (, ; § —"”"".‘ " = B
A 2 C/ / “ g o B s iy ARG
7 '.

XEROX

4001 W. McNICHO » ROA DETROIT 21, MICHIGAN




e TR T R e A

GRAVITATIONAL RADIATION
IN
FLAT SPACETIME HELATIVITY

INTERIM REPORT Ig
of

Work Done by the

UNIVERSITY OF DETROIT
Under the Technical Supervision of
U.8.A. TRECOM

Date of Report

" February 8, 1961

Prepared on Contract No. DA-44-177-TC-519

By

James C. Keith

This research was supported in part by the Headquarters, U. S. Army
Transportation lLesearch Command. Reproduction, translation, publica-
tion, use and disposal in whole or in part by the U. S. vovernment

is permitted. '




OHAVITATIONAL HALIATION IN FLAT SPACETIME RELATIVITY

James Clark Keith™

Research Institute, University of Detroit

ABSTRACT

The possibility of a l/c3 order gravitational radiation is consid-
eted within the framework of the flat spacetime relativistic gravitational
theory of G¢ Ds Birknhoff. 'The method stresses tne complementarity between
results derived by considering direct interparticle actions &nd the inten-
sity of the far gravitational radiation field. It is proved that centrif-
ugal as well as gravitational forces may dampen the accelerated motion of
8 system of masses. The results predict that a "freely" rotating mass
system will dissipate energy at a rate directly proportional to its total
energy and to the factor -k(aw/c) ’w 1/sec, w being the angular velocity,
'a' the radius of rotation, c¢ the velocity of light in vacuo, and k a di-
mensionless ratio of the system's moments.

kor & small rotor magnetically suspended and spun in ultrahigh vac-
uum; the gravitational power loss can be detected directly by measuring
the angular deceleration. An experimental decision should help shed light
on the validity of the more generaliy accepted i/¢’ order radiation pre-
dicted by other means.

* Lesearch supported in part Ly twhe U. S. Army Transportation Kesearch
Command; tort kustis, Virginia, under Contract No. DA-44-177-TC-519. :




Purpose. .

Using the typical flat spacetiwme relativistic grevitational theory of G. D.
Birkho[‘(‘,l we shall apply the theory to prediction of possible zravitational effects
of an order higher tha# 1/02. Several effects of interest appear in connection with
the assuvia}ed gravitational field and radiation from accelerating masses.

One result of special interest is the prediction of a new, alternate type of
'pure’ cravitational radiation which lies directly between the 1/c order gravita-
tional aberration effect suggested by Laplace2 and the l/c5 order gravitational
quadrupole radiations predicted ty Einstein and others.? The new prediction§ appear
susceptible to experimental verification. This is interesting in that no gravi-

tational phenomena of an order higher than l/c2 have ever been observed. In the

last section an experimentum crucis is proposed to test the validity of the resulting

predictions.

Notations needed. =

iy _ o _ = &
gO:‘ S By T (h-1,-1,-1) for 4 = 635 = (1,1,1,1) for 1 = §
=0 for i 7 j - =0 for 1 7 §
1,§,kymyn= 1,2,3,4 (spacetime components). ¢ = 2,3,4 (space components only) .

= ij ~2 /4
0° - ﬁ -0 =g J Pronton? whers the stentavd Sumabion cHnvEREAGY nolds on
upper-lower repeated indices. v is the 3-vector del operator.
+
X the gravitational constant: Yy = l/(l—[v/c]z) the Lorentz factor.

h_ gravitational potential tensor. B;k gravitational field tensor.

1}
1j’

u’ 4-velocity component. vV 3-vector velocity.

T t?J(r,ct) stress-energy-momentum tensors of mass and gravitational field.

— 2 - =
a J-vector acceleration. a = G-d

t  4-force component. F 3-vector force.
« angular velocity (radiens/sec). ¢ ¥ 8 x 10°° cm/sec speed of light in vacuo.
Units.

Unratiohalized c.g.s. when nceded.
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« 1. BABIS AND BOME INTERESTING CONULUSIONS OF THE BIRKHOKF THEORY
L
L]

1.A_Postulates of the relativistic gravitational theory of G. D. Birkhoff.

The formal basis of the Birkhoff gravitational theory is embodied in the fol-
lowing postilates ;xpounded by Birkhoff, Graef; and Barajas?4 ‘

B4 The frame of reference of gravitational phenomena is the flat {+,-,-,-)

spacetinie of Lorentz-Minkowski .
B2 The formal principle of equivalence is assumed.?

© Bi3 The gravitational field is completely characterized in spacetime by a doubly
covarient symmetrical potential tensor hyy. The gravitational field components

BiJk ate linear combinations of the first partial derivatives of hijr

Bi4 The hy, of a mass point at rest with respect to an inertial system is egual
in Spacetimé to the product of the Newtonian potential i, = YM/r times the
doubly covariant Kronecker delta. -

B.8 Gtavitational perturbations propagate with the velocity of light in vacuo
ih &n inertial reference system.

B:8 The hij of a mass point in arbitrary motiori is equal to the set of all the

instantaneous gravitational fields generated by this mass point in all its posi-
tions in physical space.

B:7 7The potential tensor of a gravitatienal field eadsed by many mass points 1is
equdl to the sitm of the gravitational potential tensors of each mass point.

I should like to draw special attention to Birkhoff's erucial concept of the
1imiting velocity of "disturbance’ in the perfect fluid of his theory.® In 1ight
of the axiomatic nature of this concept, B.5 might perhaps be worded more suggeét-
iveiyt

B«8 1Inertial and gravitational disturbances, forces, and field potentials prop-
dgate at fundamental velocity ¢ of magnitude equal to the speed of light in vacuv;
independent of the mass or energy density or velocity of the frame of reference:

Some very pointed atguments of Moshinski7 concerning the complementary pure
atuvitational field interactions can be summdrized by adding two postulates to the
above system: These give a concise description of the field aspects of*Birkhoff
Theoty.
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H.% kach component of the potential tensor h1’ in rectangular orthogonal coor-
dinates satisfies the inliomogeneous wave equation: {_‘]2h1J & 4n1pij 8

B.9 ‘tae field frteraction energy density is given by the Lagrangian tumction,
i

7

= -1/RnY gij "M /ax 1 ‘h ADJ + $nMp!
shere p n 19 the eqnivalent mass density of &he extermal field.

.Bil - B.7 embody the direct interparticle gravitational action description in
much the same way the "new" electrodvnamics of Moon and Spencer9 gleaned from the
10th Century phyBics describes the direct interperticle action in electromagnet#F
theory, Postlulates Bi8 and B.9 manifest the field aspects of the 5rav1tapiona1.£heory
proposed by Birkhoff: Both field and particle descriptions will be of interest.

The ahove postulates are consistent with Birkhoff's initial formutation (1842)
and must be assumed to generate a completely self-contained flat spacetime relativ-
istic theory of gtavitational interavtiom, The tneeory as 1t stands is & strohg se-
yuel to the first dttempts by Nordstrom (19i2) and Whilepead (1922) to develop a rel-
ativistic gravitational thepry within the unifcrm flat spacetime of Lorentz-Minkowski.,:

I,B “Applications of the theory,

Tiee gravitational theory of Birkhoff may be summed up by the equations"1

c2d2xi/ds2 & f%/m = (anij/axk - ’dhjk/'dxi)ujuk
(1)
gij 62hhn/3xialj = 4nyp = of in free space, 0.
| (i,$,m,m eun from 1 te 4)
The "true" mass m is assumed eonstant adeng the world tuhe "&"; c2d2x1/ds2 = ff/m
is the 4-acceleration component ef a particle acted on by the gravitational force,
and measures the curvature of tie world tube which that (extended) particle pervaces.
u1 are components of the world velocity of m and constitute the unit tangent vector
to the world tute. 13 is the metric tensor ?or a flat spacetime. hjj are sym-
metric components of the gravitational tensor jpotertial.
Ih a free stationary space surrounding and proper to a point mass M, the Poisson

1

equation of (1) becomes time-independent and ylelds a proper static solutlon for hij’
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4.

(static) .
_biij/r . (2)

1"(paint mass)

where biJ is the Kronecker deltd, * 1 when 1=j and 0 when 1#§. This 1s also Birk-

hoff's svlution for the static, spherically symmetric central mass where integration

extends over the volume of "true® mass of the Birkhoff perfect fluid of density
olj . pgéij' Only point-mass and spherically symmetric solutions of hij will be
considered in this article unless further integratiom is indicated.

~ Graef hue shownl® that when the mass M moves with arbitrary velocity, the rel-

ativistic potential encountered in an inertial frame of & remote observer is ob-

tained by ordinary transformation laws for e second order tensor in flat spacetime:

h1J . (2“1“J - giJ)ho (8)

Here ui, uj are QUvariant components of relative velocity between M of ha and the
rest frame of an inertial observer, hy; being the Newtonian potential -lﬂ/r. Graef
#iso shows how more refined considerations will require all gquantities to be taken
at their retarded times with r in the denominator of h, replaced by [r - (¥ ¥}/e}
in usual manner,10 - E
Bubstitution of the static hij of (2) into the force equations (1) gives the
equations of motion for a small point mass m moving in the field of M with relative
velocity components uJ5 u¥. Birknoff integrated the force equations and derived
the correct cruclal test predictions from his new theory in 1942, The theory so
fur has predivted accurstely 8ll observed gravitational phenomena. The correct
Pactor of 2 in the gravitational bending of light appears as a direct and Egﬂi
arbitrar! conseguence of the Theory as opposed to such implications as drawn by
LR Thirringii, In addition Graef hes predicted the apsidal advance in the general
problem of two bodies vithout excessive effort,4 and Romero Juarez has done like-

wise with a restricted three-body ptoblem of great interest.12

T
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In 1945, Alba realized that were a central mass M to ro?é%e sbout 1ts axis, its
gravitational field would be modified somewliat as suggested by the relativistic de-
pendence of the potential tensor in (3).13 It was not until 1952 that Alba applied
his result to the calculation of non-planar forces on the orbit of a satellite,l4

thus generalizing Birkhoft's equations for the relat?vlstic rnotion of a point mass
in a static fleld.

Alba's arguments seem satisfactory from a pienomenological point of view and
consistent within the framework of the Birkhoft Theory. The axial rotation of an
extended mass M perturbs its static field because of relation (2) derived by Graef.
the statie fleld of M in its proper frame must first be transformed into a frame ro-
tating with minus the angular frequency of M. Ihercby a new field of M is set up
in all inertial spaces, in particular (to a good approximation) 1in that space in
which & satellite orbits about M. Once tkis new field of M has been found by (3),
the remaining relativistic corrections depend only on the velocity of the orbiting

.mass m with respect to the center of mass of M.

Spin acceleration thus appears to perturb the static central field in a singular
and irremovabde manner. Since Graef has shown that hij appears diagonalized 221{
in its 212252 rest frame, it can be inferred tiiat absolute motion or acceleration

Qof & source M will 1in géneral always affect its external field in the non-acceierated
"free" space posed Ly the universe, as will be shown more rigorously in a later
section.

The external gravitational fields of accelerating masses are therefore distin-

guishable in the Birkhoff Thecry In an absolute sense. l1he new cxternal fleld

potential of ah accelerating mass has the character of a non-diegonalized tensor

of second corder: ThLe complexity of the total external field is thus enhanced in a

definitive way,.
A natural eoxtension of Alba's argument treats the effect of acceleration of

j

the orbital mass m. Let v’ be components of 4-velocity of M relative to the center
of mass of an n-M system, and uJ Le the components of velocity of m also relative

L)
to the system's center of mass. Let us compare the results of substituting the

potentials given by (') for m into the force equations (1). ‘the acceleration

. .
RS i -




- 6.

experienced by M as a result of the force exerted on it by the field of' m follows
immediately:

c'd'x‘/ds’ = (2uln.'vj - vi)vk ’dho/dx - (2uJ»"u . . 1) dho/"*x H

" Shovl\'k(auiu.'/dxk - E‘ujuk/dxl) 4)

The last term drops out 2:1{ af the non-diagonad components of the tensor potential
vanish, The acewleration experjenced by m as & result of the force exerted on it
by M obtains by permuting the roles of the v‘, u‘, and n  in (45.

To illustrate the physical sisniﬂcam:e of these equations, consider the
ideal situation where m rotates im & circie avout M so that hg and Y = 1/[1 - (v/c) ]
are time-independemt constants of the motion amd the ratio m/M<<l. Under these

cunditions tle d-vector acceleration of M is found from equation (4) to be:
- 2 o 2 2 o 2
F/M = -2y - NV, - 2y (2y° -Dha,/c (5)
where h, * ~ya/r amd 6, is m's acceleration in the pesitive T direetion. The last
=

term of (6) shows the gravitatiomal force acts also on the equivalent mass of the

m-M ffeld epergy, ‘lie factor T suggests the gravitational mass is twice the equiv-

flent field energy mass, which appears to be loecalized about m. When m accelerates,
the equivalent mass of its field interaction emerg) also accelerates. The first
term on the right of_ (6) is the main relativistic correction term of the Birkhoff
Theory. If the ratie of m/M is not vanishingly small, additional residual terms
will appear in the description of the wotion because of the velocity of M relative

to the center of mass.

I1.C. Question of theoretical and experimental comparisons
between the grevitational theories of Einstein and Birkhoff.

It would ve interesting to find reaspnrable in-range experimental tests for de-
ciding definitely in favor of the curved or flat spacetime versions of gravitational
theories. One wonders from the standpoint of the models involved how meny residual

levels of fine effects the rinstein and Birkhoff theories in fact describe.
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Verification ot 1/c® order "crucial tests" such as advance of Mercury's peri-@
“ueliony bending of light around the sun, and shift of the emission line of Mdsshgugr
y-rays in the karth's gravifational and rotary centrifugal fields, brilliantly con- ©
firm the Birkhoff theoret1:u1 predictions as well as those of Einstein. At the same |
time, the Mdssbauer experiments check the locally 1ndist$nguishab1e nature of the ef- i
fevts of gravitational and centrifugal fields on electromagnetic waves as commonly ‘
assumed in both theories. Such close theoretical correspondence makes one skeptiecal
that decisive tests to decide in favor ef either theory will by found in the area
of 1/t° effeetss 1ne theories down to this level appear equally valid representations
of ﬁature.

This situation suggests the desirability of exemining residual géavitational
effects of arder higher than 1/c2A Do accelerating systems radiate away energy
through their gravitational field and run down? O

There are yet no experiments which determine the existepce, magnitude, or velo-

[ ]
city of propagatfon of "pure" gravitational radiation (op evea induction) fields,

The "crucial tests" above indicate very indirectly that the characteristie velocity

of gravity may well equal the velocity of light in vacuo.7 Aecording te Laplace, if
pravity propagates at some fundamental velocity, aberratiom of the cemtral forces ex-
perieticed by a satellite shouwld cause 1/c order tangential forces teo affect contins
vusly the satellite's seemlar equation.? Paradoxicelly, if ¢ is the speed of light

in vacuo, such a first order effect would have been observed. astronomically 3ong age.

On the bther hand, the l/c5 order Einstein gravitational radiation reaction
' g

(whicl Eddington censiders a residual, fifth order Laplace effect) remains beyond
the tange of praetical measurement . 19 |

The directiem saken by the pgevious considerations of, Birkhoff; Graef, Moshinski,
and Alba have led me to apply the Birkhoff Theory for the first time to effects of an ﬁ
order higher than 1/c*. In the absence of experimental results, such residual grav-
itational effects aie only possible descriptions eof the physical systems involved.
This effort is motivated in part by tiie fact that the ensuing predictions appear barely
to be within t?e range of experimental observation: If this were indeed the case, the ;
results offer a definitive experimental test for the respective models deriving from
kinstein and Birkhoff theories for the cases of gravitational radiation from acceler-

ating mass systems.




11+ MAGIATION GREACTION ON MASS ACCLIEIATING IN GRAVITAIIONAL FIELLS

I1.A _Time component of gravitational 4-force on & mass m.

Io study in a simple \?ay the gravitation(gl radiation process, it would be well
" to formilate 6 measure of the totel time rate of change of energy in a mass system,
m(ﬁ unly gravitational forces acting, the time comp%nent of inertial force according

to the Birkhoff theory must equaf the time component of gravitational force, 1i.e,

ef - yd/dt (yme?) = cff' (6)

By imposing Pirkhoff's eondition of orthogonality of the world velocity and world

force, the corresponding relation u',fi = 0 gives that

wy = -0’8 4 B e @)
or T — -
eff = ef - .k (7a)
& 3 -

-

where v 1s the non-relativistie 3-vector velocity and Fg is the relativistic Birkhoff
B=vector ferce given by suwming the spatial (2,7,4) components of the gravitational

4-force défined by (1). Conbining (6} and (7a) gives the net time rate of change

@f energy of tie pass m in an external gravitational field:

yd/detéymc’y = v F, = oF/dt (B}

Tige dverage of Sfmls cuamtily over a long time & gmtegeal maber of revolutpons T

1s defined by the time-averaging ageration: ®

]

i T — -
¢E/dt 1/71 J v !’ngt, (9)
0

With a long term or integral cycle gravitational radiation loss, the time conponent

of gravitationai force would not average to zero and would affect m's inertial
®
energy. bdince the gravitational induction field is usually considered the conser-

L)

vative part of the total field, its fluctuations average to zero in this process;

.




9.

Since the Birknhoff Theory is intended to describe completely all gravitational in-
teractions, and the conservative induction field Tcomponents vanish,” we assume what
is left from equation (9) contains information about the gravitational radiation or
radiation-reaction undergone by an accelerating system of masses:. The time-averag-

ing operation on dk/dt in. (8) is implicitly carried out in our following results.

1t.B Bubsidiary field conditions.

Some refinement is necessary ta account for the finite velocity of propagation
.of‘ fields. Buch subsidiary conditions derive naturally from the postulates of the
first seetion: Graef derives retardation ronditions for the gravitational potential
tensor using postulates B.b-ﬂ.p.m Except that they apply to & second order tensor,
these conditions are the same as those of the standard Liemmrd-Wiechert retarded
potentials of electromagnetic theory so familfar in the 1iteratures Consistent
results can be obtained usually by efpansion of the fields and veloeitfos measured at
the origin of tbe.obaervor in a Taylor Serfes about the point t, - ry/c, where ry is
the distanve to each souwrce-mass element dmy. Physically, this allows the field at
the center of mass of & system at time t, to be expressed by .upérpoaixg contritutions
from each d-‘ at time l"/c earlfer, ‘

It can be showm that the net effect of the refardation conditions on the source
moving with uniform velocity 1s to make the total force appear to come from the present
rather than the retarded position of the source. 16 When additionally the source ac-
eelerates, residual tangential components can arise in the force field and cause a
degradation of the energy of an interacting sysiem of magses. We examine this sig-
@utfon in detail in the next sections. .

11.¢ Field retardation.

In Part I we have sean how aeeeleration ®T a mass accord#ng to the Birkhoff Theory
v

modifies its static gravitational field. When a force acts on a mass causing it to

* Tidal frictions and the like are not considered in the presém study. ' 1
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accelerate, it also acts to accelerate the negative equivalent mass of the gravita:u
tional field energy. The'result 1s summed up by equation (5), which holds down to
the 1/c” uvrder of residual gravitational effects.

Graef has shown,as pointed out in the last section,that h1} musf actually be
treated as a retarded tensor potential, As mentioned, the net effect on the New-
tonign potential h, is to make the gradient ®of h  at the origin apﬁear to come from
the .present position of the sourde to a very good approximation. The modified tensor

potential however also involves derivatives of the retarded velocity components of m.

When expanded out in a Taylor sevies about the woint t, - r/c, r being the distance

to the center of mass of the system,

(loup/e = Yo -lr/ediiv,/at +(e*R1c")d"% /M7 vermnaanrseinn (10)

-
where v, is the present vector valacity. We reatPict gurselves to physical systems
|

Where ¢ passesses continuads, well bohaved derivativesyamd ¥ {c. We shall consider
[ ]

. only terms dowp tw the first ardep in 1/es The 1sat term of equation (5) nhow becomes

’r’s/. . 2@ - e, /ef ¢ 2R - D r/cYaby et a1y <

The rate ‘'of enwrgy dissipation from the Jast term is thent
]

L1

Byt BT - Dingr/c v /et 12

Thg minus sign indicetes the system dissipates power wien ‘mh, = —lymﬂﬁa M ran e
any mass at gtintance § {at gesé gelasive to the ordgin) whieh inferaceés with my

11.10 Radiaplow reactiom in varioms physieal systems of Interest.

The result lends itself to an interestimg physical imterpretation: The gravisa-
#¢fonal force Letween m and M would be almost central except that the equivalent mass
of their mutual fielid energy, wirich is localized about m,lags m in space because of
the above retardation condition on the velocity components. The direct gravitational
force between that (negative) equivalent mass of the field enérgy and M then tries to

pull m "Lackwards" and opposes the motion.
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In the ideal case of a mass m rotating i# a circle with h, = a constant and with

v’ an invariant of the motion, the velocity ig perpeﬁdicular to the acceleration and:

®

- O ;
. voF - -2;2(272 - 1)(Igm/r)(rw/c)3m° (19) .

This is proportional to the square of the absolute acceleration and apparently has
no angular dependepce: Bince the time average of the square of the acceleration 1is
the squate of the acceleration, the result for a ring of mass orbiting around & cen-

tral mass M becomes

L '=.2‘,2-',‘{‘1 "s
v 's$ring 2@ - D /D Ge/e) (14)

wheteas 1f the rimg of mass holds 1tself together gravitationally and spins at the

same tinme aroupd its eenter of mass,

o Fg = wytyt - Hym’ (r) e {15)

»

-

kor an equaly belancing mass pole rotating In opposition to m, both vand ¥ are
reversed and the power losses of the (xlnbinéd nasses are additive.
e
Equation {13} gives the energy dissipated ih a unit tfme from an M-m planetary
system, Ekvidently, the energy®is lost continuously and at a constant ¢ate. The
ratio of the power dissipated to the total negative emergy of the M-m sestewm §s posi-
tive, 50 thut the kinetie emergy continues to increase and the planet sparals in

towdards M. lor the Earth-Sun system, letting T be the present period of 1 year,
dT/dt ¥ -2 (rw/c) *w? (16)

8ince all the values are known, immediate substitution and integration of the effect
over 10° years results in the prediction that the year will be 10 hours shorter than
how due to the gravitational reaction deri;ed above. The present long term stability
of atomic clocks falls just slightly short of the. accuracy required for the measure-

ment of such an effect. Hoth m and M should radiate a power due to their own abso-

lute accelerations: If r and a are the distances of m and M from the center of mass

A
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-

e -
"V is found to equal ¢ 'vM; end the sum equals:

[ =
0 =3

of the m-M system, mr = Ma; F

®
-4y" (2y" - Dy’ (ro*) 7/c® , {11
®
The power dissipated by the mutual 1nterac?ion of m and M is therefore M/m times
the power either mass dissipates individuaily? As the ratio of M/m approaches 1
as in the case of the rotating dumbbell, tbe power dissipated in the mutual inter-
action approaches that dissipafid by the masses individually. |
To calritlate the self interaction of an accelerating mass, let the center of
mass of m be at Q(r,t) whi}e P(r', t, -G' - rYc) is a non-accelerated point of an
inertial spave ®fpstantancously” oecupied by m. The field at P originating at Q
fs retarded by @ time ¢* = Yo Comsidering the interaction of dm' with the static
field of my we find the approximate power d1ssipated in the self-interaction by
integrating dn' over the entir? mass distwibutien. This gives é net resistance

to ai's (lipear) esvcoleraiion ofs

-2 .
- ey?eBy* - 1) ym’ (@0 /a0%)1/c] (18)
The power disslipated by the mem dumbbell will be compatible with this result if

we assime voherence will make the final result N° = 4 times the power from one of

the masses,

" See equation (13).




' hlr of h

. o 13,
e , III. THE FAR FIELD

111.A How does accelerationggffect the energy density of the far gravitational field?

In accordance with the findings of Part I, only componentQDof gravitational field
in the direction of absolute acceleration of source mass m will be relevant to first
order calculation of the far field gravitational radiation intensity. This appears .
reasonaﬁle on grounds that field energy density has equivalent mass which reacts in
1ine with the source's apparent acceletation as shown in equation (B). ©

The Lagrangian function Moshinski chooses (Postulate B.B) for the energy densit)
of a Birklhoff gravitationai field reduces in free space in absénce of other fields to:

L = (1/8) g™ (@™ /axt) (on_/ox)) (19)
. B
In this meetion we concern ourselves with the way the first order radial component
. changes along r and centributes to outward flow of gravitatidnal radiation

1]

fram the accelerating mass systems Thus we write
1 —
L= (-1/8)ynygd (on ' /oxt) (on”/axjg = (-1/4) ny(M )? (20)

where hlr = -hlr 3 —2Y2hovr/c, and we use this to get the self-interactiom of the
far field.

The energy density in the far field ®y symmetry must propagate outward in the ra-
dial direction with finite velocity ¢ (Postulate B.5). In time dt, an amnunt of energy
dE " L dV = Le dt dA then flows ou: through the differential area dA. The total time

rate of energy change within the volume enclosing the accelerating mass systém is:

dE/dt = §A LE + dA (21)

Since dA = r’d( where Q 1s the solld angle subtended by dA at distance from the origin
ry only terms in the field energy density (20) which go as l/r? will have no singu-
larities at infinity and will indicate the net gravitational radiation flow dependent

only oh source parameters. We therefore exclude terms of higher order than 1/r2.

~
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@
This exclusion will be indicated by the new symbol s which signifies that orly 1/r

dependent terms of the fleld and 1/r’ dependent terms of the field energy density L

are to he considered,

11t.1 Linearly and circularly accelerating mass. (biagrams 1-2)
Let m, noving from ;Zst at 0(0,0,0,0) with scceleration & along the x-axis, be
ut boint Q(t,x,0,0) while P(t',x',y',z') is a non-accelerated point of "absolute"
space at which the field energy density is to be found. krom classical mechanics,
#mv’ = mex holds between the velocity, acceleration, and x coordinate of m at any
time t. Thus avx = &/v. Since the y and z components of velocity are zero, (3) gives:

= _2y*h_¢ a
hlr Y hg vx/c)cos(r,v) (22)

where cos(r,v) 1s the angle between O and QP. The gradient of hlr is

-t

Vhlr g{-QYQhO/c)cos(r,v) a/v (23)

andeequation (20) immediately gives L. Using this in conjuncéion with equation (21),

we get finallyé
db/dt 3 -§A(dn/4n)(4y‘lm2/c)(a/v)2c052<r,v) =(—4/3y‘)(lm2/c)(a/v)2 (24)

where if @ is the angle between the projection of r on the x-y plane and the x-axis,
and ¢ the angle between the r and the z-axis, dQcosQ(r,v) = sin’6 c0s2¢ daf de¢.
Hecause overall momentum must be conserved for physical systems, the picture of
an accelerating monopole of mass is too ideal. In reality, md, = Md, where M moves
in the opposite direction to counterbalance the motion of m. We now take m equal
to M and find how this modifies the total far field potential.
The velocities of the two mass points m and m are now equal and opposite, and

by Postulate 8.7 the total potential at a far field point P is:

o= ey (Y - eos v (26)




15.

So far retardation conditions on the field 1ﬁteractions have been neglected, in
which case the above potential would vanish, A little thought.howéver shows the po-
tential of the nearer mass to be slightly out of phase with that from the further
mass due to the finite field propagation velocity c. The difference in phase of the
two masses as seen at P is just 2(x/c)cos(r,v). A previous relation (iO) then gives

to the first ordert

vig) = vil) - 2(x/c)cos(r,v)aii) (26)

The total potential therefore does not Qanish, and its gradient is approximately:

(5]
aﬂlrl% -4Y2(hoa/c2)cosg(r,v) (27)
It follows immediately that:
de/dt 5 §y LE - dA = [-4/8)*y (2m) 20® /c° (28)

-

An equivalent line of reasoning gives similar results to the above for the case

of circularly accelerating mass. Again, calculation of h, requires that the velocity

1r
of the circling mass be projected onto the radius vector to the far field point P,

The angular dependence gg the h r field becomes sinf sin(¢ - wt) where w is the an-

1
gular velocity of rotatien and 6 and ¢ retain the same meaning as above. For the
case of the rotating dumbbell, retardation conditions are accounted for in the phase

difference in the sin(¢ - wt) term. The total potential at P then becomes:

s H - -4y* (h %+3/c*) sin’6 cos’ (¢ - wt) (29)
The total power dissipated can then be gotten as above by computing the gradient of
le and from it L, then integrating L over the appropriate enclosing area, This
of course gives back exactly the result in equation (28).

There is another point of even more interest in the expression for le in this
case of circularly accelerating mass. Namely 1if le represents contributions from

oppusite mass elements of & rotating ring of mass, integration over all the mass in- -

i,




"t 1 6 .

volves the term cos (¢ - wt)d integrated from 0 to t, DBut this integral dQes not
vanish, and therefore “1 at a far field point although becoming time indepéndent
in this case does not vanish. Neither does its gradient or the outward flowing
gravitational field energy density L! Integration of L over the’ enclosed area con-

taining the rotating mass ring then gﬁves a steady flow of energy out of the system:

f

di/dt 3 (-8/16)y*yM"a® /e’ (30)

Here M i1s the total mass of the ring.
kquations (2B) and (30) should be compared with (17) and (16) for the radiation
reaction for a mass dumbbell and ring derived in Part 1I, The agreement is fairly

close, but not exact numerically. The shortcoming may derive from not considering
: P .

in the second order computation involving the retardation

J o

conditions, or 1t may be irremovable in the same way that the electromagnetic mass

other components of hy

of the electron does not account for its entire mass.

There 1s an interBsting physical interpretation of what happens when m acceler-
dtes. In the Birkhoff Theory acceleration of a source mass has been seen to modify ©
its gravitational field. One can imagine the field acqyuires a new energy density
wiiieh propagates out from the mass at ¢, One might look on the Induction field action
also an 6ropagat1ng out.at ¢ in the static field case. However the net energy
"flawing out" of such & field by (20) goes as 1/r® and thus rapidly drops to zero
with ihcreasing r. The net energy flow from the residual accelerated part of the field i
has no r dependence. It therefore gives a net energy loss at distances far from the
system,

This type of gravitational radiation cannot be thought of in terms of oscillating
multipole flelds. It appears solely a result of the physical acceleration of an

interacting mass system,

111.C  Cohetence.
When N masses make up each pole of a spimming dumbbell, (28) tells us the powvf '

,radlated 1s N tines the single m-m dipole. This is the case for radiation from N !
17

coherent sources, tor moust macroscopic'physically realistic systems, the w&velength

]
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A= Rnc/wsystem is much greater than the physical dimensions. 1lhe coherence is a
result of residual radiation components emitted in phase with each other.

Next, one might naturally ask what is the gravitational radiation loss for a
Nm-m dipole épinning about its center of mass. In this case m undergoes an acceler-
ation ¢, and Nm an acceleratlon(iol/N about the center of mass. (28) shows each
pole radiates proportional to its gravitational field energy and the square of its
wn acceleration. The two masses taken with thelr respective accelerations are thus
found to radiate equally. Due to coherence, the net power is Just 4 tiﬁes tnat,
expected from the single accelerating pole alone.

So far the mutual gravitational field energy of m and Nm has not been taken into
account. Assuming the mutual field energy is localized about m for reasons expldined
in Parts I and Il, the accelerational interaction for large N dissipates a power
equal to N times that dissipated by the single accelerating pole alone. In general
an "amplitude® can be defined proportional to the square root of the gravitatig;al @
field energy and to the absolute value of the total acceleration. Because of éoher-
ence the power 1s the square of the total amplitude, but for larvge N the cross terms
and the separate contributions from m and Nm can be neglected with respect to the
radiatioh term caused by the mutual gravitational energy. ;iquivalently, the single
pole m can by thought of as interacting separately with each one of the N massés of
the opposite pole, each pair contributing incoherently to a net power again approx-
imately N times that from the single accelerating pole alone. @

An m-M gravitational system can therefore lose energy into its far field at a
rate proportional to the mmitual gravitational potential energy of the system. Such
anginterpretation is consistent with the estimates of radiation reaction found in
Part II. The radiation reaction dissipation (13) has therefore been correlated with
the far field gravitational radiation in the framework of the Birkhoff Theory. As
metitioned previously, as m approaches the size of M, 1.e. m = M, the two interpre-
tations definitely become equivalent, and the total power radiated goes as the mutual

potential interaction energy of the masses,
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IV. TWO PICTULES OF GRAVITATIONAL RADIATION LOSS

IV.A Integration of the preceding views of radiation from accelerating masses.

It wmay prove helpful to integrate the particular examples of the preceding sec-
tions into a general view of gravitational radiation in flat spacetime. The perfect
fluia! of BirkhofT, though purely an auxiliary concept and not essential to the Birk-
hof'f Theory, offers a formal connection between the gravitational and inertial forces

and will be used nere to aid in linking the complementary pictures of direct inter-

particle radiation reaction forces and the fg: gravitational radiation field intensity.

The equation of state of the Birkhoff perfect fluild, whose internal mass-energy
and momentum 1s characterized by the tensor Tij = TJi and gravitational field by
téj(r,ct) at each polnt, is defined by p = pooc2 where the pressure and density are
scalar world invariants.

'1‘1-1 describes solely the state of the "true" mass. It therefore vanishes every-
where outside the world tube of a mass particle m. téj(r,ct) describes Ell comple-
mentary gravitational field effeets. With only gravitational forces aéting, the
divergence of the sum of 1 and téj(r,ct) must vanish to ensure equilibriium of

&
forcese When the proper gest-energy density as here is assumed a priori constant

#long the world line of m, the total energy demsity generally can fluctuate between
kinetic and gravitational. In absence of gravitational fields, this provides the
standard continuity relations for the perfect fluid, while in absence of "true"
nasses we obtain the conservative character of the static gravitational field and
continuity of any radiation fields which may occur (although equivalent mass in the
field may also be a source of radiation).

Integrating the divergence of le + téj(r,¢t) over space, and applying the theo-

] a
rem of Gauss in 4 dimensions, J [T1 ] dA = 0 since 1'% - 0 outside the world tube and:

A A

mll .
) [<HEY %o
Jy Yor Vo = -fy Y3 11 (FrethaV - 4 et (Fyet) g (31)

o = 2,4,4
By direct integration, the left term 1s found to be the time component of inertial

Minkowski d-force (Yd/dt)ymcz, the time rate of change of energy in the mass system.




19,

IV.Be Radiation @gactionag;ctﬁre.
®
The time rate of change of total inertial energy can be seen to be equal to the

time component of Birkhoff gravitational 4-force multiplied by c¢. The sum of the
last two terms of (31) 1is then by definition just me Bi‘jk ujuk. This represents the
rate at which external gravitational forces actinggon m do work. Decause of‘:he con-
servative character of the gravitational induction field, this therefore expresses
the residual gravitational radiation reaction when averaged over a full cycle or

long time interval. Note that me Bijk ujuk depends oniy on relative parameters, i.e,
mutﬁal energy, relative velocity and.acceleration, etc., all in a framework of flat
spacetimes Thus we have a direct 1nter;;rtic1e calculation of radiation damping or

friction as opposed to the complementary picture which handles gravitational radiation

solely on a basis of field interactions.

Iv.C Dbirect Fleld Interaction Pictufél

aBesides calculating directly the self or external field reaction of each mass
element dm anhd summing over all elements to obtain the total time rate of change of
energy, a far field radiation intensity, which should yield a compatible result, can
be obtained by a complementary method. Let us say the energy of a gravitational ra-
diation field at distance r from m propagates in thg direction of r with fundamental
velocity ¢. The energy crossing an area dA in time dt will be found at far distances
in a volume c¢ dA dt. Using Moshinski's field energy density, Lagrangian function,

the total power dissipated over an enclosing surface will be: : ,

ak/de = §y 18 0k = —f, (@/arp g™ /oxyon /el - ak @)

This result can be compared with the selection of the Lagrangian energy density for

the electromagnetic fleld and with the corresponding form of the electromagnetic

Poynting vector.
b4
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The first term on the right in relatione(31) vanishes for our purposes because, ?
a) the time average of the conservative induction field is independent of time, and ‘
b) the local energy density of the gravitational radiation field itself can be
assumed in tie case of "steady" radiation processes to be constant on the time av-
erage, The last term describes the total flow of gravitational radiation energy
through a bounding surface and will be taken to be independent of the distance r
from the center of the radiating mass system. Under these conditions, the quantity
in brackets, {ct;a(F,ct)L compares with the quantity in brackets in the previous
relation (32), and both of these take the form of a gravitational Poynting-type-
vector describing the radiation flow, a function in general of the distance r and
the polar angles 6 and ¢, - wt.,

The dual aspect of our radiation picture is now apparent. In the case of the
far field, the angular and 1/r’ dependence of the gravitational radiation inten-
sity will enter through relation (32), whereas in the direct interparticle inter-
action of mass m with self or external gravitational forces, no necessity appears
for evoking the angular dependence of the emitted radiation. Fesolution of this
?Kmsibly significant difference in our radiation pictures would regquire more scru-
tiny than applied here, and remains a problem of certain interest. A point in fa-
vor of these pictures of gravitationalsradiation is that both otherwise seem com-
pletely consigtent with the ﬁirkhoff Theory, which indeed was originally intended

-

to describe completely all gravitational effects. One must only be aware that

more ref'inements, such as the retardation conditions imposed by Graef,lO are required

in the treatment of effects of higher than 1/c2 order,
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V. REACTION OF CENTRIFUGAL FORCES ON FREELY SPINNING MASSES.
VA Interaction of a freely spinning mass with the universe.

Interaction of the gravitational field of an accelerating mass element m in a
distribution of elements whose center of mass remains at rest with respect to a large
remote external mass M can be calculated directly from equation (4). Noting the

only non-vanishing component of vJ in this case is v' = 1, and if ES is the relativ-
istic 3-vector force which m exerts on M at a distance I so great that i’ and

higher order terms can be neglected, the last term of (4) becomes:

i-"s 52v° (1 + (v/e)®) (yMw/R) Bs/c” (33)

Here v denotes the velocity of the element m relative to its system's center of mass
(and hence in this case to M). .

It may be well before going on to indicate the physical meaning of (33).
Previous arguments of Graef*-sug;est that in the Birkhoff Theory the limiting value
of le/R{as for example for the universe)is #mc”. Were this indeed the case,

o

Fg = y*[1 + (v/e)?lmds . (M)

that is, there is a gravitational interaction with the universe approximately equal
to the inertial (centrifugal) force on m. Indeed, this expresses Mach's contention
that the so-called inertial force is actually of gravitational origin. The mutual
gravitational field energy of m with respect to M again appears to be localized
about m and to undergo the same acceleration.

Going on, we now ask what residual effects may occur in the interaction of the
mass elgkents of a freely spinning mass with the universe. Because the acceleration
of an element m must be referred to the center of spin, by equation (10) it must be
treatdd as a retarded gquantity. Tnis results in the Taylor Series expansion analo-

gous to equation (11) wnich gives a residual component of interaction force in line

with the vector velocity of ni. Neglecting all force reaction effects on the rest

energy me’ of m, which has been assumed constant along the world line, and using

® "Orbit Theory", Proc. Symp. App. Math. Vol.IX, p.171, (1957)
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the results ot equations (0), (11), and (33), the kinetic energy of each nass element

is found to decrease at a rate!
®

dK.E./dt = Fg +§ = -ay* (K.E./c?) (r/e)¥ + a%5/dt’ (35)

where r is the spin radius of m and K? k. its kinetic energy. Since the product
of v and its second time derivative is the same sign and a colinear product for an
isolated, freely spinning system, the 1losses from each mass element are apparently
additive and contribute to a net energy decay from the entire system. The "freely"
spinning mass therefore will slow down due to its interaction with all masses in

O

the universe.

This 18 strictly a gravitational type interaction. Physically, the net power
dissipation in this case appears to be non-oscillatory and indepenaent of direction.
If the universe by definition cannot itself spin, the entire angular momentum re-
action force must set back on tne freely spinning mass system causing a real slowing
down.,

¢
V.B Belf interaction of mass elements in a freely spinning system. ,

&
Equation (34) suggests that centrifugal forces can be interpreted in the Birk-
3 . -

hoft Theory in terms of direct gravitational interaction with the universe. These
forces according to postulate B.5 propagategat finite velocity c. One can therefore
ask what residual effects arise in interaction of oppositely paired elements in a
freely spinning mass distribution.

Consider Liagram 4. We ask whether the line of force between oppositely paired
mass elements passes througn the center of mass., If 1t did, it could be assumed no
tangential components of force were acting on elther mass. However we shall show how
acceleration enters the picture to preclude tie trivial result.

It takes a time 2a/c in the proper rest frame of the spinning system for a force
disturbance from one mass element to propagate to the other. This has led or perhaps
misled some autimrsg’l8 to assume the existence of 1/c¢c order tangential forces within
the system, HuweJér it is not hard to see that.in the proper.frame the oppositely
paired elements are at rest with respect to each other and no such components actu-

ally arise. However the propagation of centrifugal forces is invariant only with
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respect to velocity In a flat spacetime, not to acceleration or its rates of change,

as evidenced by the bending of light in a gravitational field. With respect to the
propagating centrifugal forces which are not acceleration invariant,the opposite mass
element in time 2a/c accelerates a distance in the tangential 6 direction of 1/6&(2&/0)8.
The angular discrepancy which must appear in the centrifugal force 1is therefore
4/3(&&2/%é) so that a 1/cs order component of that force does lie in the ? direction.
When this component is dotted with the velocity and the relativistic factors taken

into account by transforming the process out of the proper frame of the spinning

mass, the result for circular motion is just 2/3 of the result found in equation (38).
This suggests the two treatments, V.A and V.B, are very nearly equivalent,

Physically, in the rest frame of the spinning system the centrifugal forces would
appear to diminish with time. This describes a new process which can be called the
centrifugal damping of spin motion. ®

lor the spinning point dipole of radius 'a', equation (35) gives:

-

dE/dt = 2Fg' v = -4Y4mv2(aw/c)3w (36)

and the proportional decay of kinetic energy for low velocities is:

Cd(K.E.)/dt oy 2d0/dE ¥ g (40/0) % (97)
K.k, w

It is particularly interesting that spontaneous loss of rotational kinetic energy,
similar to the losses predicted from the gravitational systems im PartsII and III,
does not appear to cancel when integrated over a mass such as a rotating sphere or
cylinder whose external multipole moments do not vary with time. Since(;he "grav-
itational radiation" reaction in the case of the universal interaction is propor-
tional directly to m, tne contributions of dach mass element to the total power

dissipated are additive and equation (6) can be generalized to:

. 4 N3 2 3 .
(dh/dt)gunorgl radiation reaction 'Jm 2y (rg/c) riw” dm (38)

g
e

Ihis expression sets a lower bound on the rate "freely" spinning mass systems slow down.
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A lucid interpretation attaches to the separate situations of purely gravita-
tional and centrifugal radiation damping. Physically, in (13) picture v/c compon-
‘ents of a negative outward-flowing "g-field" fluid acting against the negative
equivalent mass of the m-M field. In (33) picture v/c components of positive out-
ward-flowing "centrifugal field" fluid to act against the positive equival_el‘nt. mass
of the kinetic energy. A little reflection will show both effects go in the same
direction, causing a net rate of energy loss from the accelerating mass system in
agreement with the minus signs which appear in these formulae.

Gravitational or/and centrifugal damping of a freely spinning mass system's
motion therefore results in a positive outward flow of l/c' order gravitational
radiation energy,accompanied by a genuine decrease in the total energy of the source
system, i.e. a genuine decay of the motiun'. This 1s in contradistinction to the
net effect of 1/¢° order gravitational quadrupole radiations predicted by Einstein
and others,“ whereby a negative energy mysteriously appears to be radiated outward
while the total internal energy of the mass system increases. (See, for example,
A. Peres, l_l Nuovo Cimento, XI, 1 March 1959, p. 653).

—— ——— —

V.( Experimental magnitude of the predicted 1/c’ order gravitational radiation.
For physically realistic, laboratory-sized, symmetrically rotating masses,
acceptance of equation (38) leads to a proportional decay of angular frequency for

freely spinning masses of magnitude:

dwsdt

= (-2y*w*/c%) J roam/( ridam = -k(a/e) 0t (39)

m Jm
7 depends on the geometrical moments of the mass, being 8/7 for a right cylinder
rotating-about its axis, 1 for a thin rod rotating about an axis through its center
normal to its length. The minus sign indicates tnat the spin frequency decreases.
With a view to experimental feasibility, for a steel cylinder spinning near
the 1imits of tensile strength at velocity aw ¥ 10° cm/sec, the frequency decay
ratio depends on w'. let a® 10 ° em with © on the order of 10° radians/sec.

dw/dt is then found to be on the order of » radians/sec/sec. The effect is thus

o
on the order of 5 parts in 10 on frequency.
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It seems within possibility simulganeously to generate and measure such quanti-
ties using a type of magnetic suspension and rotation apparatus developed by Beams,19
By suspending the rotating mass in ultra-nigh vacuum and making use of suspension
symmetry, virtually all stray frictions are impressively reduced. Moreover, magnetic
and other residual drags appear to vary proportional to much lower powers of the
frnquenuy.20“

The angular frequency and its rates of change are capable of being detected
with great precision by comparison with a good frequency standard. The experimental
techniques appear hard but straightforward.gOb On the other hand, tests for the
pravitational quadrapole radlation of Einsteina, even if reinterpreted in thé sense

of sections V.A and V.B, are of an (aw/c)2 lower magnitude and far beyond the range

of present instrumentation. - =
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trayed in 4a does not occur.  However,
be expected to retard the m-m di-
while the centrifugal forces propagate at

pole spin. constant velocity, the mass system accel-

erates, causing a smaller but finite apgular
discrepancy and tangential force components.
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